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FOREWORD

This report presents the results of work performed by

Lockheed's Huntsville Research & Engineering Center while

under subcontract to Northrop Nortronics (NSL PO 5-09287)

for the Aero-Astrodynamics Laboratory of Marshall Space

Flight Center, Contract NAS8-20082. This task was conducted

in response to the requirement of Appendix B, Schedule Order

152, under the direction of Richard Beranek, Unsteady Aero-

dynamics Branch.
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SUMMARY

Oswatitsch and Keune's parabolic method for steady transonic flow is

applied and extended to bodies of revolution oscillating in a sonic flow field. A

Laplace transform technique was employed to derive the dipole solution, and

the Adams-Sears iterative technique was used in the stability derivative cal-

culation.

A computer program was developed to perform the stability derivative

calculation for the slowly oscillating cone and parabolic ogive. Inputs for

the program are body geometry, thickness ratio, acceleration constant Fand

the pitch-axis location.

Sample calculations were performed for the parabolic ogive and circular

cone. These results are compared with those obtained by using other tech-

niques and the available experimental data-for circular cones. For circular

cones, the numerical studies show that the present results agree quite well

with the available experimental static stability data and the calculated pitch-

damping falls between Wehrend and Yanagizawa's experimental results. These

comparisons show that the present analysis indicates a favorable trend. Finally,

a possible method of improving the present analysis is proposed.

iii
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NOMENCLATURE

A

a

C
Co

c

C
m

CN

CN 'C )
a q

Cm., C
m

a q

C ,CN; m,

CN , Cmi

C
p

C
Po

C
Pl

C

d CN /dx
- a

e, exp

F(x)

F+ 2ik, Eq. (2.10)

body pitch axis location

freestream sound velocity

Euler's constant = 0.57721567

pitch moment coefficient = pitching moment/q* Q. (Q ) Q
O0

normal force coefficient = normal force/q Q (Q)

stability derivatives due to angle of attack

stability derivatives due to total damping-in-pitch

in-phase flutter derivatives

out-of-phase flutter derivatives

pressure coefficient =(P- P )/q*

pressure coefficient due to steady axial flow

in-phase pressure coefficient derivative = 
cose\ a /6--0

out-of-phase pressure coefficient derivative =

cos! a- /0

local normal force coefficient slope

exponential function

doublet distribution function

viii
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K o(r) modified Bessel function of the second kind of zero order

k reduced frequency = u I*/U* 00

I body length

L Laplace inversion transform operator

M freestream Mach number = U /C*

O "order of"

p Laplace transform parameter

Q(x) body cross-sectional area = 2rR2 (x)

q freestream dynamic pressure

R(x) body radius

t time measure in a body-fixed reference frame = tU 00/

U freestream speed
00

W(x) body centerline motion function defined by Eq. (3.5)

x sonic point location
s

x, r, 8 body-fixed cylindrical coordinates

x, y, z Cartesian coordinates

iF acceleration constant, Eq. (2.7)

y ratio of specific heats, 1.4 for air

6(t) instantaneous angle of pitch

60 amplitude of angle of pitch

e body thickness ratio = Rmax/' = R(1)

(x, t;r) second order correction function, Eq. (2.18)

' crossflow out-of-phase perturbation potential

dipole coordinate

ix
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= 3.14159265

complete time-dependent perturbation potential, Eq. (2.2)

axial-flow perturbation potential

pulsating source potential, solution of Eq. (2.10)

complex perturbation potential, solution of Eq. (2.4)

dipole solution in Laplace transform plane defined by
Eq. (2.13)

reduced complex perturbation potential defined by Eq. (3.2)

crossflow in-phase perturbation potential

Subscripts and

( ), ( )" etc.

( ,)x( )xx etc.

()

()(1)

( )(2)

( )(1)+ (2)

( )R

( )

Superscripts

derivatives with respect to the independent variable

partial derivative s

derivative with respect to time

first-order quantity

second-order quantity

first-order plus second-order quantity

real part

imaginary part

physical quantity with proper dimension

x
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Section 1

INTRODUCTION

The basic small perturbation equation governing transonic flow over

slender bodies is well established. Due to its nonlinearity, however, analyt-

ical (closed form) solutions are obtained only in a few special cases. In 1955,

Oswatitsch and Keune (Ref. 1) introduced an approximate solution (parabolic

-method) to steady sonic flow over the front part of a half-body of revolution

by assuming a linear variation of the perturbation velocity in the mean flow

direction (xP -x constant) for linearization of the transonic equation. Maeder

et al, (Refs. 2, 3 and 4) extended this approach to the entire transonic Mach

number range and applied the theory to full bodies of revolution as well as two-

dimensional airfoils. Later Maeder and Thommen (Refs. 4 and 5) and Hosakawa

(Refs. 6 and 7) improved Oswatitsch and Keune's parabolic method by introducing

a correction function accounting for the nonlinearity. The parabolic method was

then improved substantially by Spreiter and Alksne's Local Linearization method

(Refs. 8 and 9), which yields excellent agreement with experimental results.

Recently, the method of parametric differentiation by Rubbert (Ref. 10) and

Rubbert and Landahl (Ref. 11) greatly advances the state of the art of the tran-

sonic flow problem. Unfortunately, this solution does not appear in a workable

form and immediate application to the unsteady case is not obvious.

In the unsteady transonic flow, Landahl (Refs. 12 and 13) following the

fundamental development of Lin et al (Ref. 14) linearized the unsteady flow
2/3 pequation by assuming high-frequency (k >> f for planar flow and k >> c2QnE

for axisymmetric flow) oscillation and extensively explored the equations for

various two and three dimensional shapes. Hsu and Ashley (Ref. 15) further

studied the blunt-nose slender bodies performing lateral oscillation by extend-

ing the work of Landahl (Ref. 12).

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER
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Within the frame of unsteady linearized transonic flow Liu (Ref. 16)

extended Platzer and Hoffman's (Ref. 17) quasi-slender body theory for

supersonic flow by adopting a body-fixed coordinate system to treat the half-

body of revolution oscillating at sufficiently high frequencies in a sonic flow

field (M = 1).
00

In the recent work of Teipel (Ref. 18) and Liu (Ref. 19) they included the

"nonlinear term" of the unsteady perturbation potential equation in the analysis

of airfoils (Ref. 18) and bodies of revolution (Ref. 19) oscillating in a sonic flow

field by extending Oswatitsch and Keune's parabolic method (Ref. 1). Calculated

results for a NACA 65 A 005 airfoil oscillating at both high and low frequencies

have been presented by Teipel (Ref. 18). The results showed remarkable agree-

ment with Nelson and Berman's experimental data (Ref. 20). For the oscillating

bodies of revolution Liu (Ref. 19) obtained the approximate solutions for both

high and low frequencies (valid in the range 0 < k < 1) but no numerical results

were presented.

The' material presented in this report is a continuation of Liu's work

(Ref. 19). Following his analysis, a brief description of the derivation is

repeated in this report for the reader's convenience. Stability derivative

calculations were performed for slowly oscillating parabolic ogives and cir-

cular cones in a sonic flow field by applying Adams-Sears' (Ref. 21) iterative

procedure.

Assuming a constant r (see Eq. 2.7) for a particular body of revolution

implies that the x-derivative of the perturbation velocity in the main flow

direction ((Px) is constant or, at least, changes very slowly. For a parabolic

half-body of revolution this assumption is nearly correct but is not valid for

-The "nonlinear term" actually is the linear term with variant coefficients
appearing in the unsteady perturbation potential equation (see Eq. (2.4)). -
They are called "nonlinear terms" here to signify that they are the coupling
terms contributed by the nonlinear term in the steady transonic perturbation
equation to the unsteady crossflow perturbation equation.

2
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cones. In spite of this limitation, calculated results for the circular cone, in

addition to the parabolic ogive, have been presented in this report (see Section 5)

to show its qualitative trend.

Due to the lack of experimental data for the oscillating parabolic ogive,

no comparison between the calculated and experimental results has been made.

There are only very few test data available for oscillating cones (Refs. 22, 23

and 24). It is apparent that more experimental work in the field of unsteady

aerodynamics is urgently needed.

In the subsequent sections, a body-fixed coordinate system (Fig. 1) is

adopted and all the quantities are non-dimensional except those superscripted

with an asterisk (*).

3
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Section 2

APPROXIMATE SONIC EQUATIONS AND SOLUTIONS

The detailed derivation of an approximate solution to the unsteady "non-

linear" transonic perturbation potential equation has already been presented

by Liu in Ref. 19. Here, only a brief description of the derivation is presented.

It has been shown (e.g., Landahl (Ref. 12)) that the transonic small perturbation

potential c4(x, r, 8, t) has to satisfy the following equation

2 1 1. 2 2
(1-M )( + 1 +1 2 lxt ot 0o-oo) xx r r x r0 tt o 1) xx

r

Assuming the body performs simple harmonic motion, the complete perturba-

tion potential can be written in the form,

ikt
(x,r,8,t) = k(x,r) +'p(x,r,8) e (2.2)

Letting M = 1.0 and substituting Eq. (2.2) into Eq. (2.1) yields the following

equations:

1
O(1): rr + r (y+l) xxx (2.3)

A 1 A ^ 2 ^ a 
0(6o) 'pr r + - 9 -(2ikx k ) (Y+l) + (p) (2.4)

r

where the term A (e ik) is neglected assuming small amplitude oscilla-

tions (Ref. 18).

The basic dipole solution (n can be obtained from the source solution (°

by the following relation
^ a?8
0 = ar cose (2.5)

4
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By substituting the above relation into Eq. (2.4), one obtains

1%+ (2.6)
,r r - 2-ik x + k 2 = (Y + 1) (xx + xx) (2.6)

Oswatitsch and Keune (Ref. 1) solved Eq. (2.3) by approximating

(Y+ 1) xx = r = constant > 0. (2.7)

Equation (2.3) becomes

rr +r r F x (2.8)

The parabolic solution of Eq. (2.8) has been given by Oswatitsch and Keune

(Ref. 1) as
x

-(x,r) = - 4 f(~) *exp 4(r d (2.9)

Ignoring the term (Y+l)Ox ,xx in Eq. (2.6) and applying the relation in Eq. (2.7),.

one reduces Eq. (2.6) to

1 2
Or 1 + r ASx + k2¢ 0 (2.10)

where A = F+ 2ik.

Laplace transform in the x-direction transforms Eq. (2.10) into

- 1 2 0
frr +- r - = 0, (2.11)

For convenience, F is' called the acceleration constant in the subsequent
sections.

5
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where

2 = (F+ 2ik) p - k

00

S°(p,r) = q(x,r) e
'

pxdx .

The solution of Eq. (2.11) is

-- 1 -
P(p, r) = - F(p) Ko(Ar) (2.12)

where Ko(Xr) is the modified Bessel function of the second kind of order zero.

The dipole solution then is

_os =q2 cosQ - 3 cose
P(p, r,) =ar cose = - 2 (p) a- K(r) - XF(p) K r) 2 F ( r) . (2.13)

Expanding Kl(Xr) for small r and performing the inverse Laplace trans-

form, one obtains the following dipole solution in the physical plane.

A
p(x, r, O)

= F(x) cose
Zi r rCo

+ rr cos F(x) Enr + 7(F, k)] - F (i) n(x- 4) dH

0 2 2k r cosF) + r ;(F k - (~) -()dr

,]o

x f~~~~~~~I
O

(2.14)

6

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC/HREC D162375

where

l(r,Fk) = l(k + +c - 1 +i - tan-1/r . (2.15)

Equation (2.14) is the general parabolic dipole solution for Eq. (2.10). Since

the present report is only concerned with the low frequency case, Eq. (2.14)

can be further simplified by applying the following "low frequency" assumptions

(Ref. 19), i.e.,

k<1
,*~~~~ ~~(2.16)

k = O[Fr

Introducing the low frequency parameter ji = k/r< 1 and requiring the quad-

ratic and product terms of M and k be negligible in the expression (2.14) gives

i9(x, r, 8) = F() (x, r; cos (2.17)
2 ?r r

where

4~(xr;F~ = F'x) (-f +c-
t~,r;]r)F ( n1)= F fn(x -) d~l8 7r 4

0

+ t (X) (In--- + c - d ((2.18)
o

It has been noted previously (Ref. 19) that the above low frequency solution is

most suitable for applying the Adams-Sears iterative procedure (Ref. 21).

Hence, the stability derivative calculation can yield a finite value for the

limiting case of k-0.

k =O()=lim k/F < oo: 0 < k < 1
F-o

k =O()=lim k/F = 0: Jl < 1
F-0

7
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Section 3

BOUNDARY CONDITIONS AND ITERATIVE PROCEDURES

This section describes the application of the Adams and Sears iterative

procedure (Ref. 21) to determine the dipole distribution F(x) in Eq. (2.17).

The present report follows closely the procedure used in Ref. 16.

In addition to the boundary conditions at infinity the solution must also

satisfy the tangency conditions at the body (Ref. 17):

Or ' R (x).(l+Ox)
r =

r = -1 + R'(x)'I x at r = R(x), (3.1)

- (x -a) + R(x).R'(x + R (x) .
xr X x

where

'(x,r): in-phase perturbation potential, and

X(x,r): out-of-phase perturbation potential.

The reduced potential X(x, r) is defined as

A

X(x,r) = (xr,c ) = 6(x,r)(x,r) . (3.2)cos0

From the relations in Eqs. (3.2) and (2.17), one can easily obtain the following

relation

X(, r) = F(x) + (x,r;). (3.3)

8
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By differentiating Eq. (3.2) with respect to r and utilizing the relations in

Eq. (3.1), one gets

Xr r =R(x)
= -W(x)+R'(x) * Xx 

W(x) is the body center-line motion function and expressed as

W(X)|r=R(x ) = 6 + Ex -a) + ] 2 (3.5)

Applying the Adams-Sears' iteration procedure one can write

X(x,r) = X(1) + X (2 )'

and
F(x) = F(1)+F ( 2 )

(3.6)

(3.7)

The first term on the right-hand side of Eqs. (3.6) and (3.7) is the slender

body term and the second term represents the correction for the body thick-

ness and the acceleration constant rF. Substituting the above relations into

Eq. (3.3) and collecting the terms of like order gives:

X(1) · F(1)

2irr
X'2' -+ (xr ;)·

(3.8)

(3.9)

From Eqs. (3.4), (3.8) and (3.9) one obtains the following relations:

F(1)() (l)(x)
2 =2r

F(Z)(x2 ) 8 (1) - (z) (1 )I- 7 F r2 1Or (x) + · (
2i 2 +ar = -2~rr

at r = R, (3.10)

*Fr is also thickness dependent, but this is related to the nonlinearity of the
sonic flow.

9
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where

W ( l)(x) = 6 + (x-a) 6

(3.11)W(2(x) - '(x) W6
- + W2

W(x) = w(1)(x) +W(2)(x)

By substituting the relations in Eq. (3.11) into Eq. (3.10) and after a simple

rearrangement, one can write:

F( 1 )(x) = 2Q(x)[6 (x-a)6]

F(2)(x) Q + (x - a) 2 K'x6 + 2Q (x) 
(

a-r
ir 717 r

(3.12)

(3.13)

Substituting Eq. (2.18) into Eq. (3.13), F(2)(x) becomes (see Appendix A for

details):

F(2)(x) = 6 (x + 2 ZR Q( + (x-a) Q'2(x) + 2ZQ(x]It, /rn (3.14)

Upon comparing the relations in Eqs. (3.2) and (3.3) and utilizing the expres-

sions for F ( ) (Eq. 3.12), F ( 2 ) (Eq. 3.14) and (1) (Eq. A.2), one finally

obtains the in-phase and out-of-phase cross flow potential valid to the second-

order as:

1(1)+(2) = Q(x) F +ZR

r(1 )+(
2
)=x -a) +

- 23'+r in-+ +Y_ 2 t 2r 4 +R

Z Id-(x - a) + rI In 4r + YQ]
I] 2-2r IV 4 ] 

10
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where

VR = F Q'(x),
VR 4 4ir

I= iJ 4[r a x++9Q 1

YR = rC 1) Q (x) Q"(4) In(x- ) d] , (3.17)

YI = r (cl)[ ( x - a) Q'(x) +Q(x -x 4-a) Q(4) + 2Q,( in(x-_)dt
0

+ 2 c Q'(x) -
0

ZR = V4 R +In _r2]

Q" ,

+ YR , -and

I= VI + n p + YI

11
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Section 4

CALCULATION OF STABILITY DERIVATIVES

The technique of using the results obtained in the preceding sections

for the calculation of the stability derivatives has been shown in Ref. 17 and

also used in Ref. 16. Once the in-phase (*I) and the out-of-phase (X) potentials

are obtained the calculation of the stability derivatives is straightforward.

4.1 PRESSURE COEFFICIENT

The pressure coefficient may be expanded for small frequency and am-

plitude, just as the perturbation potential 4D was expanded. That is

Cp(xR, t)= Cp (x,R) +C (pR)+6C 2(X,R) cos9 (4.1)

where

C : pressure coefficient due to steady axial flow,
Po

C : pressure coefficient due to in-phase cross flow, and

C : pressure coefficient due to out-of-phase cross flow.
P2

At M = 1, the in-phase and out-of-phase pressure coefficients eval--Co
uated on the body surface r = R(x), valid to the second order, according to

Platzer and Hoffman (Ref. 17) are

C = -2 (1)+(2) _R'2 (x) .2(1)
P1 x x

C = -.2 (X + )()+(2) +2 (1)+ R(x (1) R'2 (x) ) (1) 2 R(x (4.2)

1212
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where

(x,r) = Q(x) and (4.3)

A (x, r) = (x-a) Q() . (4.4)
;r

The axial perturbation velocity on the body surface according to Spreiter

and Alksne (Ref. 9):

x
x) (x,'R) 1= Q (x) QI (0)-Q(x) d4 (4.5)

~x 4 ~ 4 ~4rx 47 J (X-5
o

The local linearization method by Spreiter and Alksne (Ref. 9) further

improved the cone-cylinder case by applying the sonic point condition at the

shoulder. Thus, the improved solution for the cone may be used by letting

1/2 = 1 in Eq. (64) of Ref. 9:

2 E2 2)qx(x,R) = C In ex e In 2 4(1-x2+
t

(4.6)

Expressions of 'i and Ax are obtained by carrying out partial differentiation

of the appropriate expressions of 'I and A with respect to x:

x irR

x 72rR ( +R) (R 2 ) 2 

x Zr R x 4

x( 1 ) - +(x-a) (4.7)x rR 2r
(4.7)

),(l'(2) Q -a) .Z Q + (x a) Q'Q"
Ax 7rR [x + +TR 7r + (x a)r2R 2 2R

+ R VI) n-rR + YI

13
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where ZR and Z I are defined in Eq. (3.17), and
R I

(VR)

(VI) =
X

(VR) = 4r

(VI ) =4r [2Q+(x-a)Q
47 L '

+ Q2
Z~r

-r
(YR) 4 r

(YI)x

(ZR)

= (YI)= 4= r - (c -1)[Q +Q" + (x-a)Q -3I2 +aI 4
- 15I

+ I cQ - I2
2{- Cr 2-

= (ZR) =- -7r '(In- +c+1)R 4 7r4

(4.8)

Q,2
Q I4]

: (Zi) = - a) Q"+ 2.Fln +c+ +I + + (x - a) +Q'Q

-32- +I4 -3I a -I + I 47

Where I2, 14 and 15 are defined as follows: (See Appendix C )

I2 = 

'I4 = 

0

I5 = xQ (i) mn(x- ) de

0

14
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Q"(4) ln(x- e) di

.
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4.2 STABILITY DERIVATIVES

The four flutter derivatives are defined as (Ref. 17):

CN 6 86 6 -0

/aCC = ( )

6 k, 86 _0 O

C/a .C=V ai /" b

-1 R ' dx
- Q() RCp 

O

- Q(1)

o

1

- - 7r
Q(1)

o

(x-a) RC dx+ l)f R 2 R C dx
p1 p1

0

RC dx
P2

(x- a)RCp dx + Q( R2R' C

o

and related to stability derivatives by (Ref. 25):

-CN C
Na 6

C =C
a 6

CN + C
N

= C
a q 6

C +C C
ra q 6

1

P2

(4.10)

(4.11)

(4.12)

(4.13)dx

(4.14)

In order to be consistent with the slender body assumption, only the

terms up to second order in E are considered in the force and moment coeffi-

cients. Hence, the last term on the right-hand side of Eqs. (4.11) and (4.13)

is further simplified in the actual calculation. These two equations may be

rewritten as

15
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C.
6 Q(1)

....... m ()

(x- a) R Cp dx + | R Cp. 1

(x- a) RC dx + R2 RCdx
x ) CP2 .R 4d

0 0~~

where

c = -2 ?(1)
......... P3 

C .

The expressions of C and C used in this study for a body of revolution
P3 P4 -

with a radius of R(x) = EZ(x) are given in Appendix B, Eqs. (B.6) and (B.7).

4.3 CALCULATION PROCEDURE

To calculate the stability derivatives for a certain pointed body of revo-

lution, the integration may be carried out according to Eqs. (4.10) to (4.13)

either analytically or, numerically. In this report the numerical method is

chosen in order-to-develop a'.more general computer program which can handle

the various body shapes. that are involved.

To carry out the integration numerically, however, one needs to eval-

uate the values of the integrand along x coordinate first. To calculate the

local values of C and C on the body, one first must carry out the integra-
pI P2

tions that appeared in Eqs. (A.4), (A.6) and (4.8). These are integrated analyt-

ically as shown in Appendix C.

16
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4.4 EVALUATION OFF

To carry out the calculation of the stability derivatives according to

those equations obtained in the preceding articles, the value of the accelera-

tion constant F must be first provided. The methods employed in this report

are as follows:

* Circular Cone:

Based on the assumption Eq. (2.7) and the small perturbation velocity

for the cone, Eq. (4.6), the following relation can be obtained:

~~2 ~4x
r= f(Y+l)[ + 4 ecx 22 * (4.17)

(y+l)E4 e + 4 (1 -x 

The value of Fevaluated at x = 1/2 for cones of different thickness is plotted

as curve O in Fig. 2.

* Parabolic Ogive

Maeder and Thommen (Ref. 4) and Hosokawa (Ref. 6) introduced a method

to solve for the sonic point on the body and the F value by using the following -

relations

~x(xs) = 0~(x s t. I (4.18)

*xx(Xs ) = Y+l

In Fig. 2, curve O is given by Maeder and Thommen (Fig. 9 of Ref. 4) for

the parabolic bodies of revolution, curve ( is calculated according to con-

ditions in Eq. (4.18) for the parabolic ogive with the flow potential given by

Hosokawa (Ref. 6), curve Q is calculated according to the following relation

(letting I = 2 in Eq. (50) of Ref. 9):

F = 2(Y+1) 7r f (4.19)

17
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Curve O in Fig. 2 given by Maeder and Thommen was originally cal-

culated for the steady full parabolic body of revolution at Mach one. This

value of F is used directly for the half parabolic body of revolution in this

report. Since the physical condition along a parabolic ogive is the same as

that along the forebody of the parabolic spindle of the same physical thickness,

the sonic point will occur at the same point on both bodies. From Eq. (4.18)

one can easily see that the same F value can be obtained for both parabolic

ogive and parabolic spindle of the same thickness.

18
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Section 5

NUMERICAL RESULTS AND DISCUSSIONS

5.1 APPLICATION TO BASIC BODY CONFIGURATIONS

To illustrate the effect of body geometry, thickness ratio, pitch axis

location and the "nonlinear" contribution, i.e., terms associated with F on

the static and dynamic stability derivatives, numerical examples were calcu-

lated for two basic configurations. They are:

1. Right Circular Cone R(x) = ex

2. Parabolic Ogive R(x) = ex(2- x)

Most of the numerical studies were compared with the previous linear-

ized flow results (Ref. 16) and other available theoretical and experimental

results (Refs. 12, 23 and 24).

5.2 DISCUSSION OF RESULTS

Stability derivatives were computed and plotted versus three parameters:

body thickness, pitch axis location and the reduced frequency. In this present

low frequency calculation, the acceleration constant F has to be preselected

before the stability derivative calculation. The F values are based essentially

on three previous steady transonic flow theories, i.e., Maeder-Thommen's

theory (Ref. 4), Spreiter-Alksne's theory (Ref. 9) and Hosokawa's theory (Ref. 6).

In Fig. 2, the acceleration constant F is plotted as a function of thickness ratio

for the cone and ogive according to the different formulas provided by these theories.

The local normal force slope d CN /dx for the cone and the parabolic
a

ogive are shown in Figs. 3 through 5. In Figs. 4 and 5, the results calculated

19
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for the ogive using the F value according to Maeder-Thommen and Spreiter-

Alksne are presented. Since the F values are approximately equal, the results

obtained using curve ( (Hosokawa) are not very different from those obtained

using curve O and these results (Hosokawa) are not presented in Figs. 4 and 5.

In Fig. 6, the normal force coefficients C N based on different F values
a

are plotted against body thickness ratio for a parabolic ogive. Large distinc-

tion and different trends of the thickness dependence are found for C
N

when
a

compared with the slender body and the previous linearized flow results. Good

agreement with experimental results (Ref. 23) for a 12.5-degree cone is found

in Figs. 7 and 8. In fact, the present calculation predicts, in general, closer

results to experiment for both C
N

and C m than the linearized flow results.
a a

This result justifies that the present analysis is a more consistent one. In

Fig. 9, the damping-in-pitch normal force coefficient CN' for a 10-degree

cone is given in contrast to the various oscillating supersonic cone theories

(Refs. 26, 27 and 28).

The damping-in-pitch moment coefficients C are given in Figs. 10

through 16. Figures 10 through 12 illustrate the pitch-axis location effect

on Cm. for a cone and an ogive. When compared with experimental results

for a 12.5-degree cone (Fig. 11), the present results fall in between Wehrend's

(Ref. 23) and Yanagizawa's (interpolated between 10-degree and 15-degree

cones, Ref. 24) results. Figures 13 and 14 compare the thickness effect for

a cone and an ogive with various pitch-axis location predicted by the present

method, linearized flow theory (Ref. 16) and Landahl's theory (Ref. 13). It is

seen that the slender body theory, in general, predicts a higher cone pitch-

damping than the other theories.

Figure 15 presents the frequency dependence of damping-in-pitch moment

coefficient Cm. for parabolic ogives of different thickness. Previous linearized

20
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flow and Landahl's results are also plotted for comparison. Note the in-

validity of the linearized and Landahl's theory when the reduced frequency

k approaches zero. In Fig. 16, the influence of body shape on the damping-

in-pitch moment coefficient is demonstrated for a cone and an ogive of 0.1

thickness ratio. In contrast to the linearized theory, the present method

indeed predicts a finite value as the reduced frequency k approaches zero.

21
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Section 6

CONCLUDING REMARKS AND RECOMMENDATIONS

6.1 CONCLUDING REMARKS

In the preceding sections, the low frequency potential solution based on

Oswatitsch-Maeder's linearization concept is applied and extended for calcu-

lating the aerodynamic forces and moments acting upon half bodies of revolu-

tion performing slow pitching harmonic oscillations. Using this solution, the

present analysis can provide a finite value for the stability derivatives as the

reduced frequency approaches zero. This value is of engineering interest

and cannot be obtained through the previous linearization formulation (Refs.

13 and 16).

Following the previous work (Refs. 16 and 17), the Adams-Sears' itera-

tive procedure was used to obtain the in-phase and out-of-phase perturbation

potentials, thus facilitating calculation of the stability derivatives. The num-

erical studies showed that the present results agree quite well with the experi-

mental value of static stability derivatives for the circular cone (Figs. 7 and 8).

Comparison with the experimental results (Refs. 23 and 24) for the damping-in-

pitch moment coefficient for the cone also shows that the present analysis

indicates a favorable trend. These comparisons seem to substantiate the

approximation made in the present analysis. However, to obtain the low fre-

quency solution, it was necessary to approximate the governing equation (2.6),

by ignoring the term Ox qxx; thus the approach cannot be completely justified

mathematically. It is, therefore, essential to determine the error incurred

in the present approximation and to further investigate new results based on

some other improved solutions for comparison. No definite assessment of

the technique described in this report can be made based on the currently

available few test data for circular cones, though it shows a favorable trend.

22
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In this study, the technique of selecting the acceleration constant, r,

has been based on some analytical and semi-analytical methods. If the ex-

perimental data are available, however, the r value can be calculated from

either the static or the dynamic test data. The validity of the method de-

scribed in this report can also be checked by calculating the r value from the

static data and using this F value to obtain the dynamic data. This calculated

dynamic data is then compared against the dynamic test data.

6.2 RECOMMENDATIONS

Among the unsteady transonic flow studies, Hosokawa's (Refs. 6 and 7)

nonlinear correction theory seems to offer immediate applicability for the

present problem. His nonlinear correction procedure can account for the

transonic nonlinearity, the effect of the transonic normal shock and, in the

case of unsteady flow, the recovery of the term Ox(Px
x

. By properly incor-

porating the nonlinear correction procedure to the present low frequency

solution, one can obtain the "correction value" for the in-phase and out-of-

phase potential, hence the "correction value" for the stability derivatives.

This approach is now being pursued, and numerical studies will be performed

for a parabolic ogive and a parabolic spindle, so that the error incurred due

to the term x(Px x can be investigated from the results of parabolic ogive and

the shock effect can be investigated from the parabolic spindle calculation.

Due to the lack of experimental data the evaluation of the present method

is only partially successful. Therefore, it is strongly recommended that

systematic, both static and dynamic, experiments on the body of revolution in

the transonic flow range be performed to aid the advancement of the state of

the art in this particular field of study.
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Appendix A

SECOND ORDER DOUBLET DISTRIBUTION FUNCTION
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Appendix A

The derivation of F(2)(x) is straightforward; however, it involves a

lengthy step to arrive at the final result, Eq. (3.14). For the purpose of

keeping record of the result obtained, the step-by-step derivation is pre-

sented in this appendix.

For convenience Eqs. (3.12), (3.13) and Eq. (2.18) are rewritten here:

F(l)(x) = 2Q(x) + (x-a) 6

F(2X) = j X6 + E(x - a) 6 + 2Q(x) ar(1)F 6+~7 Ta 

(3.12)

(3.13)

(X. r;) =rr IF (X) ( 8rZ-9 7 4
+ c - F (4) fn(x - ) d;,)/

+kr - r4 + F () n(x - ) d

From Eq. (2.18) one may write

(2.18)

(1)(x, r ) r F'(1) ) i Fr
r -( + c - ) (1)() n(x -S )

0

d]

- (A.1)+ ikr [} (X1) A(x-i ) n

+4-- + - ()4-

A-1

LOCKHEED - HUNTSVILLE RESEARCH & ENGINEERING CENTER
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then by making use of the relation in Eq. (3.12)

(1) (xr;F) = 4r 6 Q(x) + 6 E -a) Q'(x) + Q(xIt n r= ~~~~~~~~47
+ c- 11

- T ,6Q"(x) + 6 rx-a) Q(x) + ZdQ(xi)fn(x -,td4

+ikr 6 Q (x) + 6ET Ex- a) Q'(x) + Q(xj In
Fr 2

4 +c}

6 Q"(x) + 6 x-a) Q"(x) + 2 Q'(xj n(x - ) d

= 6 Fr4 + C -
4 + 1)

Q'(x) -f
0

k r
-4Ec - a)_FT E Q'(x) + 4(xl En + c-x- JOa O": )

+ 2Q(- ln(x - ) d4]

Q'(x) -f 
0

+4 7r | ])
Q'(x) + Q (xj) En r- 4

A-2

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER

ikr /x

o

}d

Q"(x) . Qn(x - f)

Q"(x) In(x - i )

+c - 1]

[ (n 4 )
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X [0 a) Q"(a) + 2 Q'(g ln(x - ) d
0

= 6r[ - Q'(x) Fn 4 + (c-1)Q'(x) - / J Q (t) n(x -t)di] -O [k6]

o

+ 6 rL x -a) Q'(x)

+ I {oQ(x)

+ Q (x) Qn 4

Fr2
In r + c Q(x)

4

+ r
4ir (c -1)x -a) (x) + Q(x)

_Jx

0

_6 r
6 r In 4 | + ) Q (C -4 7 1) Q'(x) -F

O

+ 6rE x-a) Q (x)+QQ(xi t jX r
4
r

'r FX-2 Tj 

+ (c - 1) x -a) Q () + Q- a)
0

+ 2 c Q (x)Zi7r
fx

0

Q'() + 2 Q'() Qn(x -) d

Q"(~) Qn(x -5)ad]

A-3

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER

0 f a) ) + Z Q (g)l In(x -) d|o 0

Qox(l Q"( ) fn(x - )

Q (0) n(x - ) d~
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= 6r + YR + r

= Q'(x)
4-?'

[c- 1)Q'(x)

Ex - a) Q'(x)

_ Q d"(t) m(x - ) d

+0 +'(X
+ Q (x] + QZ(r

YI 4 r
I 4 7

+ I
2 q

it (c Q- x) 1)-, " *) 

Ic Q'(x) - g Q nx-) del ' A.6)~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~. 1 . ,

0 J

Note that the terms containing k 26 were ignored for this particular case be-.

cause k is considered to be small and use of the following relation

ikt6 = 6 eikt
o

(6 = ik6)

has been made to eliminate i.

-a- =- 6
ar

V + YR +6r 2VR R Ir
B

R

A-4
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where

VR

(A.2)

Y r 
R = 4ir

r

I 4 r

(A.3)

(A.4)

(A.5)

VI +Y
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+ 6 [ 4 )VI + YI

YR] +6 vi (2 t EIn r4 )+Y]

6 ZR + 6 ZI

where

ZR = VR(2 + In rr) + Y

Z= VI + r + YI

Finally, one obtains

.[2
'2
Q'x) + ~2 ZIQ(x .

A-5
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= 6 

(A.7)

(A.8)

F(Z)(x)

+ 6 r V]

+ In - +4
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Appendix B

FURTHER SIMPLIFICATION OF
PRESSURE COEFFICIENTS
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Appendix B

In order to calculate C and Cm. in accordance with the assumption
M6 6 2

that the body is slender and terms smaller than order E can be neglected,

the C and C in the second term on the right-hand side of Eqs. (4.11) and

(4.13) need to be simplified further. The simplified Cp and C , by neglect-
p 1 p2 P

ing the higher order terms than E, are respectively denoted by C and C
p3 P4

For convenience Eq. (4.2) is repeated here and the order of each term

in E is noted directly below each term.

C = 2 , (
1

)+(2) - R (x). 1 (B
1 )

PI x x

2

C -2(kx +q')(1)+(2)+22 (l) + R(x(1) O R' 2(x) (1) (-2R(x (B.2)
~~P2 x ) X X

(e + e) E E. · (E -E E)

It is obvious that only the first term on the right-hand side of Eqs. (B.1) and

(B.2) needs further consideration. The expressions for I, xI and Ax are:
XB-

B-1

LOCKHEED- HUNTSVILLE RESEARCH & ENGINEERING CENTER



LMSC/HREC D162375

(,) +() = QR (1 +YR )IrR

e (e°+ E2)

E

3
E

Q
(1 + YR) + QR rR

- 2 +V R27 R R

3
E

3
E

(Y) -Q + (V )
x 7r2R 2Rx

2
'E

E
3 3 3 3 3

E E E E " C

x ) = 7rR -a) + Y + Q

.'- (e o + e¢) e. 

+ (YI)

(E 0 + e 2 )

- Q'Q"(x-a)
r2R

3 0
E *E

Q, 2

- Q + (VI)
2 -2R x

By retaining the terms containing e in Eqs. (B.3), (B.4) and (B.5), one finally

obtains the expressions for C and C as follows:
P3 P4

C
P3

C
P4

= 2 
= rR

=-2 (x- a) +2 -- -

which can be written as

C
P3

P4

(B.6)

(B.7)

= -2 ( 1 )

x

( xf ··'

B-2
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(B.3)

, (1)+(2)
x

C * (E O+E 2) E

(B.4)

(B.5)
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Appendix C

INTEGRAL TERMS
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Appendix C

To simplify the writing in the text some of the integration terms are

defined in this appendix as follows:

I1 = Q'(t) In(x - ) d

O

I2 = d'( n(x -)- S)d
0o

I:3 = f t () In(x - ) d (C. 1)

o

=4 I4 /x J"'Q(t) ln(x - t) da

15 = Q()n(x-)d

If the radius of the body under consideration is written in the following form

R(x) = EZ(x) = e(Ax + Bx ) ,

then Eqs. (C.1) become

2 [ A 2 62A2 B2JI1 = E 2 A . J2 + 6 AB · J3 + 4 J

I2= 7 E [2A2 J1 + 12 AB · J2 + 12 B 2 J3
21J 3

13 = 7r 2 2 A2 J + 12 AB J3 + 12B2. J4 ] (C.2)

I4 = r 2AB J1 + 24 B 2 J2
2 L2

I5 = [ e 1ZAB J2 + 24 B *J 3 ]
C-l'
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where

x

Jn = / (n- 1)In(x- )dE =

1-.

(n- 1)

1(j + InxE (j + 1 )
j=O 

n
n , n=1,2, 3 ,4n
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